enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. [1] Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces , the hypersurface of the tesseract consists of eight cubical cells , meeting at right ...

  3. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...

  4. Hypercube - Wikipedia

    en.wikipedia.org/wiki/Hypercube

    In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.

  5. Rubik's Revenge - Wikipedia

    en.wikipedia.org/wiki/Rubik's_Revenge

    A solved Rubik's Revenge cube. The Rubik's Revenge (also known as the 4×4×4 Rubik's Cube) is a 4×4×4 version of the Rubik's Cube.It was released in 1981. Invented by Péter Sebestény, the cube was nearly called the Sebestény Cube until a somewhat last-minute decision changed the puzzle's name to attract fans of the original Rubik's Cube. [1]

  6. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    The most familiar 4-polytope is the tesseract or hypercube, the 4D analogue of the cube. The convex regular 4-polytopes can be ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius.

  7. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    The image on the left is a cube viewed face-on. The analogous viewpoint of the tesseract in 4 dimensions is the cell-first perspective projection, shown on the right. One may draw an analogy between the two: just as the cube projects to a square, the tesseract projects to a cube. Note that the other 5 faces of the cube are not seen here.

  8. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8. The cube operation can also be defined for any other mathematical expression, for example (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that

  9. n-dimensional sequential move puzzle - Wikipedia

    en.wikipedia.org/wiki/N-dimensional_sequential...

    The 120-cell is the 4-D analogue of the dodecahedron in the same way that the tesseract (4-cube) is the 4-D analogue of the cube. The 4-D 120-cell software sequential move puzzle from Gravitation3d is therefore the 4-D analogue of the Megaminx, 3-D puzzle, which has the shape of a dodecahedron.