enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    The tangent plane to a surface at a given point p is defined in an analogous way to the tangent line in the case of curves. It is the best approximation of the surface by a plane at p , and can be obtained as the limiting position of the planes passing through 3 distinct points on the surface close to p as these points converge to p .

  3. Implicit surface - Wikipedia

    en.wikipedia.org/wiki/Implicit_surface

    This theorem is the key to the computation of essential geometric features of a surface: tangent planes, surface normals, curvatures (see below). But they have an essential drawback: their visualization is difficult. If (,,) is polynomial in x, y and z, the surface is called algebraic. Example 5 is non-algebraic.

  4. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    The tangent plane at a regular point is the affine plane in R 3 spanned by these vectors and passing through the point r(u, v) on the surface determined by the parameters. Any tangent vector can be uniquely decomposed into a linear combination of r u {\displaystyle \mathbf {r} _{u}} and r v . {\displaystyle \mathbf {r} _{v}.}

  5. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    For example, in the two-dimensional case, the normal line to a curve at a given point is the line perpendicular to the tangent line to the curve at the point. In the three-dimensional case a surface normal, or simply normal, to a surface at a point P is a vector that is perpendicular to the tangent plane to that surface at P.

  6. Tangent vector - Wikipedia

    en.wikipedia.org/wiki/Tangent_vector

    In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...

  7. Tangent space - Wikipedia

    en.wikipedia.org/wiki/Tangent_space

    The dimension of the tangent space at every point of a connected manifold is the same as that of the manifold itself. For example, if the given manifold is a -sphere, then one can picture the tangent space at a point as the plane that touches the sphere at that point and is perpendicular to the

  8. Envelope (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(mathematics)

    Finally we calculate E 3. Every point in the plane has at least one tangent line to γ passing through it, and so region filled by the tangent lines is the whole plane. The boundary E 3 is therefore the empty set. Indeed, consider a point in the plane, say (x 0,y 0). This point lies on a tangent line if and only if there exists a t such that

  9. Affine connection - Wikipedia

    en.wikipedia.org/wiki/Affine_connection

    In particular, the tangent plane to a point of S can be rolled on S: this should be easy to imagine when S is a surface like the 2-sphere, which is the smooth boundary of a convex region. As the tangent plane is rolled on S, the point of contact traces out a curve on S. Conversely, given a curve on S, the tangent plane can be rolled along that ...