enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Burst error-correcting code - Wikipedia

    en.wikipedia.org/wiki/Burst_error-correcting_code

    Proof. We need to prove that if you add a burst of length to a codeword (i.e. to a polynomial that is divisible by ()), then the result is not going to be a codeword (i.e. the corresponding polynomial is not divisible by ()).

  3. BCH code - Wikipedia

    en.wikipedia.org/wiki/BCH_code

    Given a prime number q and prime power q m with positive integers m and d such that d ≤ q m − 1, a primitive narrow-sense BCH code over the finite field (or Galois field) GF(q) with code length n = q m − 1 and distance at least d is constructed by the following method.

  4. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    The advantage of choosing a primitive polynomial as the generator for a CRC code is that the resulting code has maximal total block length in the sense that all 1-bit errors within that block length have different remainders (also called syndromes) and therefore, since the remainder is a linear function of the block, the code can detect all 2 ...

  5. Cyclic code - Wikipedia

    en.wikipedia.org/wiki/Cyclic_code

    A quasi-cyclic code has the property that for some s, any cyclic shift of a codeword by s places is again a codeword. [9] A double circulant code is a quasi-cyclic code of even length with s=2. [9] Quasi-twisted codes and multi-twisted codes are further generalizations of constacyclic codes. [10] [11]

  6. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    The cyclic redundancy check (CRC) is a check of the remainder after division in the ring of polynomials over GF(2) (the finite field of integers modulo 2). That is, the set of polynomials where each coefficient is either zero or one, and arithmetic operations wrap around.

  7. Computation of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Computation_of_cyclic...

    Division of this type is efficiently realised in hardware by a modified shift register, [1] and in software by a series of equivalent algorithms, starting with simple code close to the mathematics and becoming faster (and arguably more obfuscated [2]) through byte-wise parallelism and space–time tradeoffs. Example of generating an 8-bit CRC.

  8. Introduction to the Theory of Error-Correcting Codes - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_the_Theory...

    Chapter 5 studies cyclic codes and Chapter 6 studies a special case of cyclic codes, the quadratic residue codes. Chapter 7 returns to BCH codes. [1] [6] After these discussions of specific codes, the next chapter concerns enumerator polynomials, including the MacWilliams identities, Pless's own power moment identities, and the Gleason ...

  9. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.