Search results
Results from the WOW.Com Content Network
A convex set in a poset P is a subset I of P with the property that, for any x and y in I and any z in P, if x ≤ z ≤ y, then z is also in I. This definition generalizes the definition of intervals of real numbers. When there is possible confusion with convex sets of geometry, one uses order-convex instead of "convex".
In mathematics, in the branch of combinatorics, a graded poset is a partially-ordered set (poset) P equipped with a rank function ρ from P to the set N of all natural numbers. ρ must satisfy the following two properties: The rank function is compatible with the ordering, meaning that for all x and y in the order, if x < y then ρ(x) < ρ(y), and
2. An inductive definition is a definition that specifies how to construct members of a set based on members already known to be in the set, often used for defining recursively defined sequences, functions, and structures. 3. A poset is called inductive if every non-empty ordered subset has an upper bound infinity axiom See Axiom of infinity.
If used, it requires further definition. Down-set. See lower set. Dual. For a poset (P, ≤), the dual order P d = (P, ≥) is defined by setting x ≥ y if and only if y ≤ x. The dual order of P is sometimes denoted by P op, and is also called opposite or converse order. Any order theoretic notion induces a dual notion, defined by applying ...
In mathematics, a ranked poset is a partially ordered set in which one of the following (non-equivalent) conditions hold: it is a graded poset, or; a poset with the property that for every element x, all maximal chains among those with x as greatest element have the same finite length, or; a poset in which all maximal chains have the same ...
Depending on authors, the term "maps" or the term "functions" may be reserved for specific kinds of functions or morphisms (e.g., function as an analytic term and map as a general term). mathematics See mathematics. multivalued A "multivalued function” from a set A to a set B is a function from A to the subsets of B.
In mathematics, a differential poset is a partially ordered set (or poset for short) satisfying certain local properties. (The formal definition is given below.) This family of posets was introduced by Stanley (1988) as a generalization of Young's lattice (the poset of integer partitions ordered by inclusion), many of whose combinatorial properties are shared by all differential posets.
In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion.