Search results
Results from the WOW.Com Content Network
In software systems, encapsulation refers to the bundling of data with the mechanisms or methods that operate on the data. It may also refer to the limiting of direct access to some of that data, such as an object's components. [1] Essentially, encapsulation prevents external code from being concerned with the internal workings of an object.
In object oriented programming, objects provide a layer which can be used to separate internal from external code and implement abstraction and encapsulation. External code can only use an object by calling a specific instance method with a certain set of input parameters, reading an instance variable, or writing to an instance variable.
In his book on object-oriented design, Grady Booch defined encapsulation as "the process of compartmentalizing the elements of an abstraction that constitute its structure and behavior; encapsulation serves to separate the contractual interface of an abstraction and its implementation." [2]
Data abstraction enforces a clear separation between the abstract properties of a data type and the concrete details of its implementation. The abstract properties are those that are visible to client code that makes use of the data type—the interface to the data type—while the concrete implementation is kept entirely private, and indeed ...
Defines an object that encapsulates interaction between a set of objects, promoting loose coupling by keeping them from referring to each other explicitly. Memento pattern: Allows for capturing and externalizing an object’s internal state so that it can be restored later, all without violating encapsulation. Observer pattern
Separation of concerns is a form of abstraction. As with most abstractions, separating concerns means adding additional code interfaces, generally creating more code to be executed. The extra code can result in higher computation costs in some cases, but in other cases also can lead to reuse of more optimized code.
The C++ examples in this section demonstrate the principle of using composition and interfaces to achieve code reuse and polymorphism. Due to the C++ language not having a dedicated keyword to declare interfaces, the following C++ example uses inheritance from a pure abstract base class.
A hardware abstraction layer (HAL) is an abstraction layer, implemented in software, between the physical hardware of a computer and the software that runs on that computer. . Its function is to hide differences in hardware from most of the operating system kernel, so that most of the kernel-mode code does not need to be changed to run on systems with different hardwa