Search results
Results from the WOW.Com Content Network
Endogenous regeneration in the brain is the ability of cells to engage in the repair and regeneration process. While the brain has a limited capacity for regeneration, endogenous neural stem cells, as well as numerous pro-regenerative molecules, can participate in replacing and repairing damaged or diseased neurons and glial cells.
Neuroregeneration is the regrowth or repair of nervous tissues, cells or cell products. Neuroregenerative mechanisms may include generation of new neurons , glia , axons , myelin , or synapses . Neuroregeneration differs between the peripheral nervous system (PNS) and the central nervous system (CNS) by the functional mechanisms involved ...
Brain healing is the process that occurs after the brain has been damaged. If an individual survives brain damage, the brain has a remarkable ability to adapt. When cells in the brain are damaged and die, for instance by stroke, there will be no repair or scar formation for those cells.
Now, researchers have developed a treatment that can help regenerate myelin around nerve cells, potentially reversing the damage caused by MS. ... It was also able to cross the blood-brain barrier ...
Skin tissue can be regenerated in vivo or in vitro. Other organs and body parts that have been procured to regenerate include: penis, fats, vagina, brain tissue, thymus, and a scaled down human heart. One goal of scientists is to induce full regeneration in more human organs. There are various techniques that can induce regeneration.
Stem-cell therapy uses stem cells to treat or prevent a disease or condition. [1] As of 2024, the only FDA-approved therapy using stem cells is hematopoietic stem cell transplantation. [2] [3] This usually takes the form of a bone marrow or peripheral blood stem cell transplantation, but the cells can also be derived from umbilical cord blood.
Traumatic brain injury (TBI) can deform the brain tissue, leading to necrosis primary damage which can then cascade and activate secondary damage such as excitotoxicity, inflammation, ischemia, and the breakdown of the blood-brain-barrier. Damage can escalate and eventually lead to apoptosis or cell death. Current treatments focus on preventing ...
Stem cells have a tendency to migrate out of the injury site to other sections of the brain, thus the therapy is not as effective as it could be as when the cells stay at the injury site. Additionally, the delivery of stem cells and other morphogens to the site of injury can cause more harm than good if they induce tumorigenesis, inflammation ...