Search results
Results from the WOW.Com Content Network
A generative adversarial network (GAN) is a class of machine learning frameworks and a prominent framework for approaching generative artificial intelligence.The concept was initially developed by Ian Goodfellow and his colleagues in June 2014. [1]
Since its inception, the field of machine learning used both discriminative models and generative models, to model and predict data. Beginning in the late 2000s, the emergence of deep learning drove progress and research in image classification, speech recognition, natural language processing and other tasks.
The original GAN method is based on the GAN game, a zero-sum game with 2 players: generator and discriminator. The game is defined over a probability space (,,), The generator's strategy set is the set of all probability measures on (,), and the discriminator's strategy set is the set of measurable functions : [,].
Sometimes models are intimately associated with a particular learning rule. A common use of the phrase "ANN model" is really the definition of a class of such functions (where members of the class are obtained by varying parameters, connection weights, or specifics of the architecture such as the number of neurons, number of layers or their ...
Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
Ian J. Goodfellow (born 1987 [1]) is an American computer scientist, engineer, and executive, most noted for his work on artificial neural networks and deep learning.He is a research scientist at Google DeepMind, [2] was previously employed as a research scientist at Google Brain and director of machine learning at Apple as well as one of the first employees at OpenAI, and has made several ...
A direct predecessor of the StyleGAN series is the Progressive GAN, published in 2017. [9]In December 2018, Nvidia researchers distributed a preprint with accompanying software introducing StyleGAN, a GAN for producing an unlimited number of (often convincing) portraits of fake human faces.