enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.

  3. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    In both the global and local cases, the concept of a strict extremum can be defined. For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we ...

  4. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]

  5. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lagrange_equation

    One can use local charts (, ˙) in which = ˙ and := = ˙ + ¨ ˙ and use coordinate expressions for the Lie derivative to see equivalence with coordinate expressions of the Euler Lagrange equation. The coordinate free form is particularly suitable for geometrical interpretation of the Euler Lagrange equations.

  6. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    which is called the secant equation (the Taylor series of the gradient itself). In more than one dimension is underdetermined. In one dimension, solving for and applying the Newton's step with the updated value is equivalent to the secant method. The various quasi-Newton methods differ in their choice of the solution to the secant equation (in ...

  7. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    Thus, the second partial derivative test indicates that f(x, y) has saddle points at (0, −1) and (1, −1) and has a local maximum at (,) since = <. At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point.

  8. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    be the general quartic equation we want to solve. Dividing by a 4, provides the equivalent equation x 4 + bx 3 + cx 2 + dx + e = 0, with b = ⁠ a 3 / a 4 ⁠, c = ⁠ a 2 / a 4 ⁠, d = ⁠ a 1 / a 4 ⁠, and e = ⁠ a 0 / a 4 ⁠. Substituting y − ⁠ b / 4 ⁠ for x gives, after regrouping the terms, the equation y 4 + py 2 + qy + r = 0, where

  9. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.