enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inversion (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inversion_(discrete...

    An inversion may be denoted by the pair of places (2, 4) or the pair of elements (5, 2). The inversions of this permutation using element-based notation are: (3, 1), (3, 2), (5, 1), (5, 2), and (5,4). In computer science and discrete mathematics, an inversion in a sequence is a pair of elements that are out of their natural order.

  3. Ordered pair - Wikipedia

    en.wikipedia.org/wiki/Ordered_pair

    The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, always equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional ...

  4. Direct product of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_product_of_groups

    The inverse of an element (g, h) of G × H is the pair (g −1, ... Unlike the direct product, elements of the free product cannot be represented by ordered pairs. In ...

  5. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.

  6. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    This is a general situation in order theory: A given order can be inverted by just exchanging its direction, pictorially flipping the Hasse diagram top-down. This yields the so-called dual, inverse, or opposite order. Every order theoretic definition has its dual: it is the notion one obtains by applying the definition to the inverse order.

  7. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    Given a set X, a relation R over X is a set of ordered pairs of elements from X, formally: R ⊆ { (x,y) | x, y ∈ X}. [2] [10] The statement (x,y) ∈ R reads "x is R-related to y" and is written in infix notation as xRy. [7] [8] The order of the elements is important; if x ≠ y then yRx can be true or false independently of xRy.

  8. Converse relation - Wikipedia

    en.wikipedia.org/wiki/Converse_relation

    In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.

  9. Directed graph - Wikipedia

    en.wikipedia.org/wiki/Directed_graph

    A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines. It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, which are usually called edges, links or lines.