Search results
Results from the WOW.Com Content Network
An electron-withdrawing group (EWG) is a group or atom that has the ability to draw electron density toward itself and away from other adjacent atoms. [1] This electron density transfer is often achieved by resonance or inductive effects.
The olefins contained an EWG nitrile group and varying EDGs and the effect of varying EDGs on the rate of the addition reactions was observed. The process studied was: The process studied was: The rate of the addition reaction was accelerated by the following EDGs in increasing order: H < CH 3 < OCH 2 CH 3 .
Reductive elimination is an elementary step in organometallic chemistry in which the oxidation state of the metal center decreases while forming a new covalent bond between two ligands. It is the microscopic reverse of oxidative addition, and is often the product-forming step in many catalytic processes. Since oxidative addition and reductive ...
In Organic chemistry, the inductive effect in a molecule is a local change in the electron density due to electron-withdrawing or electron-donating groups elsewhere in the molecule, resulting in a permanent dipole in a bond. [1]
The EWG removes electron density from a π system, making it less reactive in this type of reaction, [2] [3] and therefore called deactivating groups. EDGs and EWGs also determine the positions (relative to themselves) on the aromatic ring where substitution reactions are most likely to take place.
An electric effect influences the structure, reactivity, or properties of a molecule but is neither a traditional bond nor a steric effect. [1] In organic chemistry, the term stereoelectronic effect is also used to emphasize the relation between the electronic structure and the geometry (stereochemistry) of a molecule.
In chemistry, the mesomeric effect (or resonance effect) is a property of substituents or functional groups in a chemical compound. It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone pair of electrons present on an adjacent atom. [ 1 ]
Thompson and Heathcock have performed a systematic study of the reaction of methyl 2-(dimethoxyphosphoryl)acetate with various aldehydes. [16] While each effect was small, they had a cumulative effect making it possible to modify the stereochemical outcome without modifying the structure of the phosphonate.