Search results
Results from the WOW.Com Content Network
In mathematics, a binary relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c. Every partial order and every equivalence relation is transitive. For example, less than and equality among real numbers are both transitive: If a < b and b < c then a < c; and if x ...
A transitive relation is irreflexive if and only if it is asymmetric. [13] For example, "is ancestor of" is a transitive relation, while "is parent of" is not. Connected for all x, y ∈ X, if x ≠ y then xRy or yRx. For example, on the natural numbers, < is connected, while "is a divisor of " is not (e.g. neither 5R7 nor 7R5). Strongly connected
Hence the three defining properties of equivalence relations can be proved mutually independent by the following three examples: Reflexive and transitive: The relation ≤ on N. Or any preorder; Symmetric and transitive: The relation R on N, defined as aRb ↔ ab ≠ 0. Or any partial equivalence relation;
Transitive relation, a binary relation in which if A is related to B and B is related to C, then A is related to C; Syllogism, a related notion in propositional logic; Intransitivity, properties of binary relations in mathematics; Arc-transitive graph, a graph whose automorphism group acts transitively upon ordered pairs of adjacent vertices
The transitive closure of this relation is a different relation, namely "there is a sequence of direct flights that begins at city x and ends at city y". Every relation can be extended in a similar way to a transitive relation. An example of a non-transitive relation with a less meaningful transitive closure is "x is the day of the week after y".
In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under function composition; for example, the rotations around a point in the plane.
If M is a transitive model, then ω M is the standard ω. This implies that the natural numbers, integers, and rational numbers of the model are also the same as their standard counterparts. Each real number in a transitive model is a standard real number, although not all standard reals need be included in a particular transitive model.
The reason is that properties defined by bounded formulas are absolute for transitive classes. [3] A transitive set (or class) that is a model of a formal system of set theory is called a transitive model of the system (provided that the element relation of the model is the restriction of the true element relation to the universe of the model ...