Search results
Results from the WOW.Com Content Network
Within an imperative programming language, a control flow statement is a statement that results in a choice being made as to which of two or more paths to follow. For non-strict functional languages, functions and language constructs exist to achieve the same result, but they are usually not termed control flow statements.
If-then-else flow diagram A nested if–then–else flow diagram. In computer science, conditionals (that is, conditional statements, conditional expressions and conditional constructs) are programming language constructs that perform different computations or actions or return different values depending on the value of a Boolean expression, called a condition.
The structured program theorem, also called the Böhm–Jacopini theorem, [1] [2] is a result in programming language theory.It states that a class of control-flow graphs (historically called flowcharts in this context) can compute any computable function if it combines subprograms in only three specific ways (control structures).
A simple flowchart representing a process for dealing with a non-functioning lamp.. A flowchart is a type of diagram that represents a workflow or process.A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task.
Following a top-down design, the problem at hand is reduced into smaller and smaller subproblems, until only simple statements and control flow constructs remain. Nassi–Shneiderman diagrams reflect this top-down decomposition in a straightforward way, using nested boxes to represent subproblems.
The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), [2] and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of ...
It later resurfaced in their book with Peter Sestoft [2] in 1993, and in John Hatcliff's lecture notes [3] in 1998. The below describes FCL as it appeared in John Hatcliff's lecture notes. FCL is an imperative programming language close to the way a Von Neumann computer executes a program. A program is executed sequentially by following a ...
The figure below shows a comparison of a state diagram with a flowchart. A state machine (panel (a)) performs actions in response to explicit events. In contrast, the flowchart (panel (b)) automatically transitions from node to node upon completion of activities. [9] Nodes of flowcharts are edges in the induced graph of states.