Search results
Results from the WOW.Com Content Network
Whether or not the atmosphere has stability depends partially on the moisture content. In a very dry troposphere, a temperature decrease with height less than 9.8 °C (17.6 °F) per kilometer ascent indicates stability, while greater changes indicate instability. This lapse rate is known as the dry adiabatic lapse rate. [3]
A stable atmosphere makes vertical movement difficult, and small vertical disturbances dampen out and disappear. In an unstable atmosphere, vertical air movements (such as in orographic lifting , where an air mass is displaced upwards as it is blown by wind up the rising slope of a mountain range) tend to become larger, resulting in turbulent ...
Lake stratification, the formation of water layers based on temperature, with mixing in the spring and fall in seasonal climates. Atmospheric instability; Atmospheric stratification, the dividing of the upper reaches of the Earth's atmosphere into stably-stratified layers; Atmospheric circulation, caused by the unstable stratification of the ...
Certain criteria need to be met for their formation. In most situations, water temperatures of at least 26.5 °C (79.7 °F) are needed down to a depth of at least 50 m (160 ft); [21] waters of this temperature cause the overlying atmosphere to be unstable enough to sustain convection and thunderstorms. [22]
The warmer air expands, becoming less dense than the surrounding air mass, and creating a thermal low. [4] [5] The mass of lighter air rises, and as it does, it cools due to its expansion at lower high-altitude pressures. It stops rising when it has cooled to the same temperature as the surrounding air.
In this layer ozone concentrations are about 2 to 8 parts per million, which is much higher than in the lower atmosphere but still very small compared to the main components of the atmosphere. It is mainly located in the lower portion of the stratosphere from about 15–35 km (9.3–21.7 mi; 49,000–115,000 ft), though the thickness varies ...
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
High- and low-pressure systems evolve due to interactions of temperature differentials in the atmosphere, temperature differences between the atmosphere and water within oceans and lakes, the influence of upper-level disturbances, as well as the amount of solar heating or radiationized cooling an area receives.