Search results
Results from the WOW.Com Content Network
The Brønsted–Lowry theory (also called proton theory of acids and bases [1]) is an acid–base reaction theory which was first developed by Johannes Nicolaus Brønsted and Thomas Martin Lowry independently in 1923.
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
One use of conjugate acids and bases lies in buffering systems, which include a buffer solution. In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications.
In 1923, he recognized that acid–base reactions involved the transfer of a proton, from the acid (proton donor) to the base (proton acceptor). [8] Almost simultaneously and independently, the British chemist Martin Lowry arrived at the same conclusion, thus the name Brønsted–Lowry acid–base theory. [9]
According to the Brønsted-Lowry theory of acids and bases, acids are proton donors and bases are proton acceptors. [6] An amphiprotic molecule (or ion) can either donate or accept a proton, thus acting either as an acid or a base.
In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions.
Bases and acids are seen as chemical opposites because the effect of an acid is to increase the hydronium (H 3 O +) concentration in water, whereas bases reduce this concentration. A reaction between aqueous solutions of an acid and a base is called neutralization , producing a solution of water and a salt in which the salt separates into its ...
In water, measurable pK a values range from about −2 for a strong acid to about 12 for a very weak acid (or strong base). A buffer solution of a desired pH can be prepared as a mixture of a weak acid and its conjugate base. In practice, the mixture can be created by dissolving the acid in water, and adding the requisite amount of strong acid ...