enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Calculation of buoyancy flows and flows inside buildings

    en.wikipedia.org/wiki/Calculation_of_buoyancy...

    The momentum equation in the direction of gravity should be modeled for buoyant forces resulting from buoyancy. [1] Hence the momentum equation is given by ∂ρv/∂t + V.∇(ρv)= -g((ρ-ρ°) - ∇P+μ∇ 2 v + S v. In the above equation -g((ρ-ρ°) is the buoyancy term, where ρ° is the reference density.

  3. Buoyancy - Wikipedia

    en.wikipedia.org/wiki/Buoyancy

    To find the force of buoyancy acting on the object when in air, using this particular information, this formula applies: Buoyancy force = weight of object in empty space − weight of object immersed in fluid. The final result would be measured in Newtons. Air's density is very small compared to most solids and liquids.

  4. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    (This formula is used for example in describing the measuring principle of a dasymeter and of hydrostatic weighing.) Example: If you drop wood into water, buoyancy will keep it afloat. Example: A helium balloon in a moving car. When increasing speed or driving in a curve, the air moves in the opposite direction to the car's acceleration.

  5. Richardson number - Wikipedia

    en.wikipedia.org/wiki/Richardson_Number

    If it is much greater than unity, buoyancy is dominant (in the sense that there is insufficient kinetic energy to homogenize the fluids). If the Richardson number is of order unity, then the flow is likely to be buoyancy-driven: the energy of the flow derives from the potential energy in the system originally.

  6. Grashof number - Wikipedia

    en.wikipedia.org/wiki/Grashof_number

    The in the equation above, which represents specific volume, is not the same as the in the subsequent sections of this derivation, which will represent a velocity. This partial relation of the volume expansion coefficient, β {\displaystyle \mathrm {\beta } } , with respect to fluid density, ρ {\displaystyle \mathrm {\rho } } , given constant ...

  7. Displacement (fluid) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(fluid)

    An object immersed in a liquid displaces an amount of fluid equal to the object's volume. Thus, buoyancy is expressed through Archimedes' principle, which states that the weight of the object is reduced by its volume multiplied by the density of the fluid. If the weight of the object is less than this displaced quantity, the object floats; if ...

  8. Plume (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Plume_(fluid_dynamics)

    Pure jets and pure plumes define flows that are driven entirely by momentum and buoyancy effects, respectively. Flows between these two limits are usually described as forced plumes or buoyant jets. "Buoyancy is defined as being positive" when, in the absence of other forces or initial motion, the entering fluid would tend to rise.

  9. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Buoyancy effects, due to the upward force on the object by the surrounding fluid, can be taken into account using Archimedes' principle: the mass has to be reduced by the displaced fluid mass , with the volume of the object.