enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Special relativity - Wikipedia

    en.wikipedia.org/wiki/Special_relativity

    In reality, there is no paradox at all, because in order for the two observers to perform side-by-side comparisons of their elapsed proper times, the symmetry of the situation must be broken: At least one of the two observers must change their state of motion to match that of the other. [44] Figure 4-4. Doppler analysis of twin paradox

  3. Theory of relativity - Wikipedia

    en.wikipedia.org/wiki/Theory_of_relativity

    The laws of physics are the same for all observers in any inertial frame of reference relative to one another (principle of relativity). The speed of light in vacuum is the same for all observers, regardless of their relative motion or of the motion of the light source. The resultant theory copes with experiment better than classical mechanics.

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Every object perseveres in its state of rest, or of uniform motion in a right line, except insofar as it is compelled to change that state by forces impressed thereon. [note 3] Newton's first law expresses the principle of inertia: the natural behavior of a body is to move in a straight line at constant speed. A body's motion preserves the ...

  5. Observer (special relativity) - Wikipedia

    en.wikipedia.org/wiki/Observer_(special_relativity)

    Where Einstein referred to "an observer who takes the train as his reference body" or "an observer located at the origin of the coordinate system", this group of modern writers says, for example, "an observer is represented by a coordinate system in the four variables of space and time" [3] or "the observer in frame S finds that a certain event ...

  6. Relativity of simultaneity - Wikipedia

    en.wikipedia.org/wiki/Relativity_of_simultaneity

    Assume that the first observer uses coordinates labeled t, x, y, and z, while the second observer uses coordinates labeled t′, x′, y′, and z′. Now suppose that the first observer sees the second observer moving in the x-direction at a velocity v. And suppose that the observers' coordinate axes are parallel and that they have the same ...

  7. Principle of relativity - Wikipedia

    en.wikipedia.org/wiki/Principle_of_relativity

    Special relativity predicts that an observer in an inertial reference frame does not see objects he would describe as moving faster than the speed of light. However, in the non-inertial reference frame of Earth, treating a spot on the Earth as a fixed point, the stars are observed to move in the sky, circling once about the Earth per day. Since ...

  8. Observer effect (physics) - Wikipedia

    en.wikipedia.org/wiki/Observer_effect_(physics)

    In physics, the observer effect is the disturbance of an observed system by the act of observation. [1] [2] This is often the result of utilising instruments that, by necessity, alter the state of what they measure in some manner. A common example is checking the pressure in an automobile tire, which causes some of the air to escape, thereby ...

  9. Spacetime - Wikipedia

    en.wikipedia.org/wiki/Spacetime

    A basic goal is to be able to compare measurements made by observers in relative motion. If there is an observer O in frame S who has measured the time and space coordinates of an event, assigning this event three Cartesian coordinates and the time as measured on his lattice of synchronized clocks (x, y, z, t) (see Fig. 1-1).