enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...

  3. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Many practical problems can be represented by graphs. Emphasizing their application to real-world systems, the term network is sometimes defined to mean a graph in which attributes (e.g. names) are associated with the vertices and edges, and the subject that expresses and understands real-world systems as a network is called network science.

  4. Digraph realization problem - Wikipedia

    en.wikipedia.org/wiki/Digraph_realization_problem

    The problem uniform sampling a directed graph to a fixed degree sequence is to construct a solution for the digraph realization problem with the additional constraint that such each solution comes with the same probability. This problem was shown to be in FPTAS for regular sequences by Catherine Greenhill The general problem is still unsolved.

  5. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A weighted graph or a network [9] [10] is a graph in which a number (the weight) is assigned to each edge. [11] Such weights might represent for example costs, lengths or capacities, depending on the problem at hand. Such graphs arise in many contexts, for example in shortest path problems such as the traveling salesman problem.

  6. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    The all-pairs shortest path problem finds the shortest paths between every pair of vertices v, v' in the graph. The all-pairs shortest paths problem for unweighted directed graphs was introduced by Shimbel (1953), who observed that it could be solved by a linear number of matrix multiplications that takes a total time of O(V 4).

  7. Graph realization problem - Wikipedia

    en.wikipedia.org/wiki/Graph_realization_problem

    The problem of constructing a solution for the graph realization problem with the additional constraint that each such solution comes with the same probability was shown to have a polynomial-time approximation scheme for the degree sequences of regular graphs by Cooper, Martin, and Greenhill. [5] The general problem is still unsolved.

  8. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    A special case of this method is the use of the modular product of graphs to reduce the problem of finding the maximum common induced subgraph of two graphs to the problem of finding a maximum clique in their product. [7] In automatic test pattern generation, finding cliques can help to bound the size of a test set. [8]

  9. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.