Search results
Results from the WOW.Com Content Network
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
Great Circle Map Interactive tool for plotting great circle routes on a sphere. Great Circle Mapper Interactive tool for plotting great circle routes. Great Circle Calculator deriving (initial) course and distance between two points. Great Circle Distance Graphical tool for drawing great circles over maps. Also shows distance and azimuth in a ...
Computes the great circle distance between two points, specified by the latitude and longitude, using the haversine formula. Template parameters [Edit template data] Parameter Description Type Status Latitude 1 lat1 1 Latitude of point 1 in decimal degrees Default 0 Number required Longitude 1 long1 2 Longitude of point 1 in decimal degrees Default 0 Number required Latitude 2 lat2 3 Latitude ...
They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such as great-circle distance. The first (direct) method computes the location of a point that is a given distance and azimuth (direction) from another point.
The shortest distance along the surface of a sphere between two points on the surface is along the great-circle which contains the two points. The great-circle distance article gives the formula for calculating the shortest arch length on a sphere about the size of the Earth. That article includes an example of the calculation.
The formula states that if γ is a parametrization of a great circle then (()) (()) =, where ρ(P) is the distance from a point P on the great circle to the z-axis, and ψ(P) is the angle between the great circle and the meridian through the point P.
On the other hand, the geodesic between these points is a great circle arc through the pole subtending an angle of 60° at the center: the length of this arc is one sixth of the great circle circumference, about 6,672 km. The difference is 3,338 km so the ruler distance measured from the map is quite misleading even after correcting for the ...