Search results
Results from the WOW.Com Content Network
In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation , named after Niels Henrik Abel who introduced it in 1826.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 = 9,808,357 + 0.09543. We can then get 10 9,808,357 × 10 0.09543 ≈ 1.25 × 10 9,808,357. Similarly, factorials can be approximated by summing the logarithms of the ...
The algorithm performs summation with two accumulators: sum holds the sum, and c accumulates the parts not assimilated into sum, to nudge the low-order part of sum the next time around. Thus the summation proceeds with "guard digits" in c , which is better than not having any, but is not as good as performing the calculations with double the ...
Abel's summation formula – Integration by parts version of Abel's method for summation by parts; Nachbin resummation – Theorem bounding the growth rate of analytic functions; Summation by parts – Theorem to simplify sums of products of sequences
However, though it is divergent, it can be manipulated to yield a number of mathematically interesting results. For example, many summation methods are used in mathematics to assign numerical values even to a divergent series. For example, the Cesàro summation and the Ramanujan summation of this series are both 1/2.
Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...
For example, the identity element of addition is 0 since any sum of a number and 0 results in the same number. The inverse element is the element that results in the identity element when combined with another element. For instance, the additive inverse of the number 6 is -6 since their sum is 0. [41]