Search results
Results from the WOW.Com Content Network
A line is expressed as the intersection of two planes, that is as the solution set of a single linear equation with values in or as the solution set of two linear equations with values in . A conic section is the intersection of a cone with equation x 2 + y 2 = z 2 {\displaystyle x^{2}+y^{2}=z^{2}} and a plane.
In theoretical computer science, a Markov algorithm is a string rewriting system that uses grammar-like rules to operate on strings of symbols. Markov algorithms have been shown to be Turing-complete, which means that they are suitable as a general model of computation and can represent any mathematical expression from its simple notation.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
the Christoffel symbols that describe components of a metric connection; the stack alphabet in the formal definition of a pushdown automaton, or the tape-alphabet in the formal definition of a Turing machine; the Feferman–Schütte ordinal Γ 0; represents: the specific weight of substances; the lower incomplete gamma function
The machine operates on an infinite [4] memory tape divided into discrete cells, [5] each of which can hold a single symbol drawn from a finite set of symbols called the alphabet of the machine. It has a "head" that, at any point in the machine's operation, is positioned over one of these cells, and a "state" selected from a finite set of states.
With regard to what actions the machine actually does, Turing (1936) [2] states the following: "This [example] table (and all succeeding tables of the same kind) is to be understood to mean that for a configuration described in the first two columns the operations in the third column are carried out successively, and the machine then goes over into the m-configuration in the final column."
Turing's a-machine model. Turing's a-machine (as he called it) was left-ended, right-end-infinite. He provided symbols əə to mark the left end. A finite number of tape symbols were permitted. The instructions (if a universal machine), and the "input" and "out" were written only on "F-squares", and markers were to appear on "E-squares".