enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}

  3. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: = = =, where = is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center. As an object in an escape trajectory moves outward, its ...

  4. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The quantity GM —the product of the gravitational constant and the mass of a given astronomical body such as the Sun or Earth—is known as the standard gravitational parameter (also denoted μ). The standard gravitational parameter GM appears as above in Newton's law of universal gravitation, as well as in formulas for the deflection of ...

  5. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    A quantum-mechanical analogue of the gravitational three-body problem in classical mechanics is the helium atom, in which a helium nucleus and two electrons interact according to the inverse-square Coulomb interaction. Like the gravitational three-body problem, the helium atom cannot be solved exactly. [41]

  6. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    Standard gravitational parameter: cubic meter per second squared mu nought Vacuum permeability or the magnetic constant henry per meter (H/m) nu: frequency: hertz (Hz) kinematic viscosity: meter squared per second (m 2 /s) neutrino: xi: electromotive force: volt (V)

  7. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    For an elliptic orbit, the specific orbital energy equation, when combined with conservation of specific angular momentum at one of the orbit's apsides, simplifies to: [2] = where = (+) is the standard gravitational parameter;

  8. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).

  9. Gaussian gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gaussian_gravitational...

    μ = G(M + m), a gravitational parameter, [note 2] where G is Newton's gravitational constant, M is the mass of the primary body (i.e., the Sun), m is the mass of the secondary body (i.e., a planet), and; p is the semi-parameter (the semi-latus rectum) of the body's orbit. Note that every variable in the above equations is a constant for two ...