Search results
Results from the WOW.Com Content Network
The negative gradient of pressure is called the force density. [11] Another example is a knife. If the flat edge is used, force is distributed over a larger surface area resulting in less pressure, and it will not cut. Whereas using the sharp edge, which has less surface area, results in greater pressure, and so the knife cuts smoothly.
In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.
The equation to calculate the pressure inside a fluid in equilibrium is: + = where f is the force density exerted by some outer field on the fluid, and σ is the Cauchy stress tensor. In this case the stress tensor is proportional to the identity tensor:
In fluid dynamics, the drag equation is a formula used to calculate the force of drag experienced by an object due to movement through a fully enclosing fluid. The equation is: F d = 1 2 ρ u 2 c d A {\displaystyle F_{\rm {d}}\,=\,{\tfrac {1}{2}}\,\rho \,u^{2}\,c_{\rm {d}}\,A} where
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or d S equivalently (resolved into components , θ is angle to ...
If mass density is ρ, the mass of the parcel is density multiplied by its volume m = ρA dx. The change in pressure over distance dx is dp and flow velocity v = dx / dt . Apply Newton's second law of motion (force = mass × acceleration) and recognizing that the effective force on the parcel of fluid is −A dp.
ρ p is the mass density of the sphere [kg/m 3] ρ f is the mass density of the fluid [kg/m 3] g is the gravitational acceleration [m/s 2] Requiring the force balance F d = F e and solving for the velocity v gives the terminal velocity v s.