Search results
Results from the WOW.Com Content Network
The use of an additional entropy coding tool, and higher frequency accuracy (due to the larger number of frequency sub-bands used by MP3) explains why MP3 does not need as high a bit rate as MP2 to get an acceptable audio quality. Conversely, MP2 shows a better behavior than MP3 in the time domain, due to its lower frequency resolution.
The Moving Picture Experts Group (MPEG) designed MP3 as part of its MPEG-1, and later MPEG-2, standards.MPEG-1 Audio (MPEG-1 Part 3), which included MPEG-1 Audio Layer I, II, and III, was approved as a committee draft for an ISO/IEC standard in 1991, [14] [15] finalized in 1992, [16] and published in 1993 as ISO/IEC 11172-3:1993. [7]
Audio file icons of various formats. An audio file format is a file format for storing digital audio data on a computer system. The bit layout of the audio data (excluding metadata) is called the audio coding format and can be uncompressed, or compressed to reduce the file size, often using lossy compression.
Wiki markup quick reference (PDF download) For a full list of editing commands, see Help:Wikitext; For including parser functions, variables and behavior switches, see Help:Magic words; For a guide to displaying mathematical equations and formulas, see Help:Displaying a formula; For a guide to editing, see Wikipedia:Contributing to Wikipedia
The 'Music' category is merely a guideline on commercialized uses of a particular format, not a technical assessment of its capabilities. For example, MP3 and AAC dominate the personal audio market in terms of market share, though many other formats are comparably well suited to fill this role from a purely technical standpoint.
The selection of the sample rate was based primarily on the need to reproduce the audible frequency range of 20–20,000 Hz (20 kHz). The Nyquist–Shannon sampling theorem states that a sampling rate of more than twice the maximum frequency of the signal to be recorded is needed, resulting in a required rate of greater than 40 kHz.
For nth-order noise shaping, the dynamic range of an oversampled signal is improved by an additional 6n dB relative to oversampling without noise shaping. [35] For example, for a 20 kHz analog audio sampled at 4× oversampling with second-order noise shaping, the dynamic range is increased by 30 dB.
The frequency range often specified for audio components is between 20 Hz to 20 kHz, which broadly reflects the human hearing range. Well-designed solid-state amplifiers and CD players may have a frequency response that varies by only 0.2 dB between 20 Hz to 20 kHz. [4] Loudspeakers tend to have considerably less flat frequency responses than ...