Search results
Results from the WOW.Com Content Network
Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form =, where n is a given positive nonsquare integer, and integer solutions are sought for x and y. In Cartesian coordinates , the equation is represented by a hyperbola ; solutions occur wherever the curve passes through a point whose x and y ...
The entire fraction may be expressed as a single composition, in which case it is hyphenated, or as a number of fractions with a numerator of one, in which case they are not. (For example, two-fifths is the fraction 2 / 5 and two fifths is the same fraction understood as 2 instances of 1 / 5 .) Fractions should always be ...
For solving the cubic equation x 3 + m 2 x = n where n > 0, Omar Khayyám constructed the parabola y = x 2 /m, the circle that has as a diameter the line segment [0, n/m 2] on the positive x-axis, and a vertical line through the point where the circle and the parabola intersect above the x-axis.
Thus the first term to appear between 1 / 3 and 2 / 5 is 3 / 8 , which appears in F 8. The total number of Farey neighbour pairs in F n is 2| F n | − 3. The Stern–Brocot tree is a data structure showing how the sequence is built up from 0 (= 0 / 1 ) and 1 (= 1 / 1 ), by taking successive mediants.
In mathematics, the plastic ratio is a geometrical proportion close to 53/40.Its true value is the real solution of the equation x 3 = x + 1.. The adjective plastic does not refer to the artificial material, but to the formative and sculptural qualities of this ratio, as in plastic arts.
A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. . Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or i
Also bear in mind that the fraction 2/3 is the single exception, used in addition to integers, that Ahmes uses alongside all (positive) rational unit fractions to express Egyptian fractions. The 2/n table can be said to partially follow an algorithm (see problem 61B) for expressing 2/n as an Egyptian fraction of 2 terms, when n is composite.
where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = 1 / 6 , B 4 = − + 1 / 30 , and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]