enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    Finally, multiplication of each operand's significand will return the significand of the result. However, if the result of the binary multiplication is higher than the total number of bits for a specific precision (e.g. 32, 64, 128), rounding is required and the exponent is changed appropriately.

  3. Booth's multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Booth's_multiplication...

    Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer ...

  4. Wallace tree - Wikipedia

    en.wikipedia.org/wiki/Wallace_tree

    The Wallace tree has three steps: Multiply each bit of one of the arguments, by each bit of the other. Reduce the number of partial products to two by layers of full and half adders. Group the wires in two numbers, and add them with a conventional adder. [3]

  5. Dadda multiplier - Wikipedia

    en.wikipedia.org/wiki/Dadda_multiplier

    4 layer Dadda reduction of an 8x8 partial product matrix, using 7 half adders (two dots) and 35 full adders (three dots). The dots in each column are bits of equal weight. Bits with lower weight are rightmost. The example in the adjacent image illustrates the reduction of an 8 × 8 multiplier, explained here.

  6. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    This example uses peasant multiplication to multiply 11 by 3 to arrive at a result of 33. Decimal: Binary: 11 3 1011 11 5 6 101 110 2 12 10 1100 1 24 1 11000 —— —————— 33 100001 Describing the steps explicitly: 11 and 3 are written at the top

  7. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba's basic step works for any base B and any m, but the recursive algorithm is most efficient when m is equal to n/2, rounded up. In particular, if n is 2 k , for some integer k , and the recursion stops only when n is 1, then the number of single-digit multiplications is 3 k , which is n c where c = log 2 3.

  8. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    Since the binary method computes a multiplication for every non-zero entry in the base-2 representation of n, we are interested in finding the signed-binary representation with the smallest number of non-zero entries, that is, the one with minimal Hamming weight.

  9. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.