enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  3. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    This circle, which is the one among all tangent circles at the given point that approaches the curve most tightly, was named circulus osculans (Latin for "kissing circle") by Leibniz. The center and radius of the osculating circle at a given point are called center of curvature and radius of curvature of the curve at that

  4. Parallel curve - Wikipedia

    en.wikipedia.org/wiki/Parallel_curve

    The involutes of a given curve are a set of parallel curves. For example: the involutes of a circle are parallel spirals (see diagram). And: [17] A parabola has as (two-sided) offsets rational curves of degree 6. A hyperbola or an ellipse has as (two-sided) offsets an algebraic curve of degree 8.

  5. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    Historically, the curvature of a differentiable curve was defined through the osculating circle, which is the circle that best approximates the curve at a point. More precisely, given a point P on a curve, every other point Q of the curve defines a circle (or sometimes a line) passing through Q and tangent to the curve at P.

  6. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    This curve will in general have different curvatures for different normal planes at p. The principal curvatures at p, denoted k 1 and k 2, are the maximum and minimum values of this curvature. Here the curvature of a curve is by definition the reciprocal of the radius of the osculating circle. The curvature is taken to be positive if the curve ...

  7. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    An inversion in their tangent point with respect to a circle of appropriate radius transforms the two touching given circles into two parallel lines, and the third given circle into another circle. Thus, the solutions may be found by sliding a circle of constant radius between two parallel lines until it contacts the transformed third circle.

  8. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A curve may have nonzero curvature and zero torsion. For example, the circle of radius R given by r(t) = (R cos t, R sin t, 0) in the z = 0 plane has zero torsion and curvature equal to 1/R. The converse, however, is false. That is, a regular curve with nonzero torsion must have nonzero curvature.

  9. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    Arc length is the distance between two points along a section of a curve. Determining the length of an irregular arc segment by approximating the arc segment as connected (straight) line segments is also called curve rectification. For a rectifiable curve these approximations don't get arbitrarily large (so the curve has a finite length).