Search results
Results from the WOW.Com Content Network
As its alternate name (5-methyluracil) suggests, thymine may be derived by methylation of uracil at the 5th carbon. In RNA, thymine is replaced with uracil in most cases. In DNA, thymine (T) binds to adenine (A) via two hydrogen bonds, thereby stabilizing the nucleic acid structures. Thymine combined with deoxyribose creates the nucleoside ...
The first reaction is the simplest of the syntheses, by adding water to cytosine to produce uracil and ammonia: [2] C 4 H 5 N 3 O + H 2 O → C 4 H 4 N 2 O 2 + NH 3. The most common way to synthesize uracil is by the condensation of malic acid with urea in fuming sulfuric acid: [5] C 4 H 4 O 4 + NH 2 CONH 2 → C 4 H 4 N 2 O 2 + 2 H 2 O + CO
Methylation of cytosine to form 5-methylcytosine occurs at the same 5 position on the pyrimidine ring where the DNA base thymine's methyl group is located; the same position distinguishes thymine from the analogous RNA base uracil, which has no methyl group. Spontaneous deamination of 5-methylcytosine converts it to thymine. This results in a T ...
5-Methylcytosine is a methylated form of the DNA base cytosine (C) that regulates gene transcription and takes several other biological roles. [1] When cytosine is methylated, the DNA maintains the same sequence, but the expression of methylated genes can be altered (the study of this is part of the field of epigenetics). 5-Methylcytosine is incorporated in the nucleoside 5-methylcytidine.
Thymine and uracil are distinguished by merely the presence or absence of a methyl group on the fifth carbon (C5) of these heterocyclic six-membered rings. [2] [page needed] In addition, some viruses have aminoadenine (Z) instead of adenine. It differs in having an extra amine group, creating a more stable bond to thymine. [3]
These symbols are also valid for RNA, except with U (uracil) replacing T (thymine). [1] Apart from adenine (A), cytosine (C), guanine (G), thymine (T) and uracil (U), DNA and RNA also contain bases that have been modified after the nucleic acid chain has been formed. In DNA, the most common modified base is 5-methylcytidine (m5C).
Spontaneous deamination of 5-methylcytosine results in thymine and ammonia. This is the most common single nucleotide mutation. In DNA, this reaction, if detected prior to passage of the replication fork, can be corrected by the enzyme thymine-DNA glycosylase, which removes the thymine base in a G/T mismatch. This leaves an abasic site that is ...
Activation-induced cytidine deaminase, also known as AICDA, AID and single-stranded DNA cytosine deaminase, is a 24 kDa enzyme which in humans is encoded by the AICDA gene. [5] It creates mutations in DNA [6] [7] by deamination of cytosine base, which turns it into uracil (which is recognized as a thymine). In other words, it changes a C:G base ...