enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    Linear interpolation on a data set (red points) consists of pieces of linear interpolants (blue lines). Linear interpolation on a set of data points (x 0, y 0), (x 1, y 1), ..., (x n, y n) is defined as piecewise linear, resulting from the concatenation of linear segment interpolants between each pair of data points.

  3. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    The Whittaker–Shannon interpolation formula can be used if the number of data points is infinite or if the function to be interpolated has compact support. Sometimes, we know not only the value of the function that we want to interpolate, at some points, but also its derivative. This leads to Hermite interpolation problems.

  4. Whittaker–Shannon interpolation formula - Wikipedia

    en.wikipedia.org/wiki/Whittaker–Shannon...

    The Whittaker–Shannon interpolation formula or sinc interpolation is a method to construct a continuous-time bandlimited function from a sequence of real numbers. The formula dates back to the works of E. Borel in 1898, and E. T. Whittaker in 1915, and was cited from works of J. M. Whittaker in 1935, and in the formulation of the Nyquist–Shannon sampling theorem by Claude Shannon in 1949.

  5. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.

  6. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon; the problem may be eliminated by choosing interpolation points at Chebyshev nodes. [5]

  7. Bicubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Bicubic_interpolation

    Bicubic interpolation on the square [,] [,] consisting of 25 unit squares patched together. Bicubic interpolation as per Matplotlib's implementation. Colour indicates function value. The black dots are the locations of the prescribed data being interpolated. Note how the color samples are not radially symmetric.

  8. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    The divided difference formulas are more versatile, useful in more kinds of problems. The Lagrange formula is at its best when all the interpolation will be done at one x value, with only the data points' y values varying from one problem to another, and when it is known, from past experience, how many terms are needed for sufficient accuracy.

  9. Monotone cubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Monotone_cubic_interpolation

    In the mathematical field of numerical analysis, monotone cubic interpolation is a variant of cubic interpolation that preserves monotonicity of the data set being interpolated. Monotonicity is preserved by linear interpolation but not guaranteed by cubic interpolation .