enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  3. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. [2] The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.

  4. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    Note that changing F into –F would not change the curve defined by F(x, y) = 0, but it would change the sign of the numerator if the absolute value were omitted in the preceding formula. A point of the curve where F x = F y = 0 is a singular point, which means that the curve is not differentiable at this point, and thus that the curvature is ...

  5. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equation. Here, a differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.

  6. Spherical circle - Wikipedia

    en.wikipedia.org/wiki/Spherical_circle

    where C is the center of the sphere, A is the center of the small circle, and B is a point in the boundary of the small circle. Therefore, knowing the radius of the sphere, and the distance from the plane of the small circle to C, the radius of the small circle can be determined using the Pythagorean theorem.

  7. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    If a curve γ represents the path of a particle, then the instantaneous velocity of the particle at a given point P is expressed by a vector, called the tangent vector to the curve at P. Mathematically, given a parametrized C 1 curve γ = γ(t), for every value t = t 0 of the parameter, the vector ′ = | = is the tangent vector at the point P ...

  8. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    A quadratrix in the first quadrant (x, y) is a curve with y = ρ sin θ equal to the fraction of the quarter circle with radius r determined by the radius through the curve point. Since this fraction is 2 r θ π {\displaystyle {\frac {2r\theta }{\pi }}} , the curve is given by ρ ( θ ) = 2 r θ π sin ⁡ θ {\displaystyle \rho (\theta ...

  9. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Since the equation of this circle is given in Cartesian coordinates by + =, the question is equivalently asking how many pairs of integers m and n there are such that m 2 + n 2 ≤ r 2 . {\displaystyle m^{2}+n^{2}\leq r^{2}.}