Search results
Results from the WOW.Com Content Network
The ancient Greek astronomer Hipparchus noted the apsidal precession of the Moon's orbit (as the revolution of the Moon's apogee with a period of approximately 8.85 years); [4] it is corrected for in the Antikythera Mechanism (circa 80 BCE) (with the supposed value of 8.88 years per full cycle, correct to within 0.34% of current measurements). [5]
The apsides refer to the farthest (2) and nearest (3) points reached by an orbiting planetary body (2 and 3) with respect to a primary, or host, body (1). An apsis (from Ancient Greek ἁψίς (hapsís) 'arch, vault'; pl. apsides / ˈ æ p s ɪ ˌ d iː z / AP-sih-deez) [1] [2] is the farthest or nearest point in the orbit of a planetary body about its primary body.
Log-log plot of period T vs semi-major axis a (average of aphelion and perihelion) of some Solar System orbits (crosses denoting Kepler's values) showing that a³/T² is constant (green line) For comparison, here are modern estimates: [citation needed]
aphelion The point at which a body orbiting the Earth's Sun is furthest from the Sun. Contrast perihelion. apoapsis The point at which an orbiting body is furthest from its primary. Contrast periapsis. apogee The point at which a body orbiting the Earth (such as the Moon or an artificial satellite) is furthest from the Earth. Contrast perigee.
For illustration, the long axis of the planet Mercury is defined as the line through its successive positions of perihelion and aphelion. Over time, the long axis of most orbiting bodies rotates gradually, generally no more than a few degrees per complete revolution, because of gravitational perturbations from other bodies, oblateness in the ...
This is a list of Solar System objects by greatest aphelion or the greatest distance from the Sun that the orbit could take it if the Sun and object were the only objects in the universe. It is implied that the object is orbiting the Sun in a two-body solution without the influence of the planets, passing stars, or the galaxy.
The orbital perihelion of these objects is close to, but greater than, the orbital aphelion of Earth (i.e., the objects do not cross Earth's orbit), [1] with most Amors crossing the orbit of Mars. The Amor asteroid 433 Eros was the first asteroid to be orbited and landed upon by a robotic space probe ( NEAR Shoemaker ).
The longitudes of perihelion were only 29 degrees apart at J2000, so the smallest distances, which come when inferior conjunction happens near Earth's perihelion, occur when Venus is near perihelion. An example was the transit of December 6, 1882: Venus reached perihelion Jan 9, 1883, and Earth did the same on December 31.