Search results
Results from the WOW.Com Content Network
A ring in which the zero-product property holds is called a domain.A commutative domain with a multiplicative identity element is called an integral domain.Any field is an integral domain; in fact, any subring of a field is an integral domain (as long as it contains 1).
Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain. [1] [2] Mathematical literature contains multiple variants of the definition of "domain". [3]
In mathematics, a direct limit is a way to construct a (typically large) object from many (typically smaller) objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category.
In category theory, a branch of mathematics, a pushout (also called a fibered coproduct or fibered sum or cocartesian square or amalgamated sum) is the colimit of a diagram consisting of two morphisms f : Z → X and g : Z → Y with a common domain.
In mathematics, an empty product, or nullary product or vacuous product, is the result of multiplying no factors. It is by convention equal to the multiplicative identity (assuming there is an identity for the multiplication operation in question), just as the empty sum—the result of adding no numbers—is by convention zero, or the additive identity.
The direct sum is a submodule of the direct product of the modules M i (Bourbaki 1989, §II.1.7). The direct product is the set of all functions α from I to the disjoint union of the modules M i with α(i)∈M i, but not necessarily vanishing for all but finitely many i. If the index set I is finite, then the direct sum and the direct product ...
The defining characteristic of back-of-the-envelope calculations is the use of simplified assumptions. A similar phrase in the U.S. is "back of a napkin", also used in the business world to describe sketching out a quick, rough idea of a business or product. [1] In British English, a similar idiom is "back of a fag packet".
In abstract algebra, the triple product property is an identity satisfied in some groups. Let G {\displaystyle G} be a non-trivial group. Three nonempty subsets S , T , U ⊂ G {\displaystyle S,T,U\subset G} are said to have the triple product property in G {\displaystyle G} if for all elements s , s ′ ∈ S {\displaystyle s,s'\in S} , t , t ...