enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that the degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.

  3. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.

  4. Pre- and post-test probability - Wikipedia

    en.wikipedia.org/wiki/Pre-_and_post-test_probability

    It is possible to do a calculation of likelihood ratios for tests with continuous values or more than two outcomes which is similar to the calculation for dichotomous outcomes. For this purpose, a separate likelihood ratio is calculated for every level of test result and is called interval or stratum specific likelihood ratios. [4]

  5. File:Pre- and post-test probabilities for various likelihood ...

    en.wikipedia.org/wiki/File:Pre-_and_post-test...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  6. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero. The likelihood-ratio test, also known as Wilks test , [ 2 ] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier ...

  7. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    The commonly used chi-squared tests for goodness of fit to a distribution and for independence in contingency tables are in fact approximations of the log-likelihood ratio on which the G-tests are based. [4] The general formula for Pearson's chi-squared test statistic is

  8. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    Each of the two competing models, the null model and the alternative model, is separately fitted to the data and the log-likelihood recorded. The test statistic (often denoted by D) is twice the log of the likelihoods ratio, i.e., it is twice the difference in the log-likelihoods:

  9. Diagnostic odds ratio - Wikipedia

    en.wikipedia.org/wiki/Diagnostic_odds_ratio

    In medical testing with binary classification, the diagnostic odds ratio (DOR) is a measure of the effectiveness of a diagnostic test. [1] It is defined as the ratio of the odds of the test being positive if the subject has a disease relative to the odds of the test being positive if the subject does not have the disease.