enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    The Maclaurin series of the logarithm function ⁡ (+) is conditionally convergent for x = 1. The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges.

  3. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  4. Conditional convergence - Wikipedia

    en.wikipedia.org/wiki/Conditional_convergence

    Agnew's theorem describes rearrangements that preserve convergence for all convergent series. The Lévy–Steinitz theorem identifies the set of values to which a series of terms in R n can converge. A typical conditionally convergent integral is that on the non-negative real axis of ⁡ (see Fresnel integral).

  5. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Therefore, first, the series resulting from addition is summable if the series added were summable, and, second, the sum of the resulting series is the addition of the sums of the added series. The addition of two divergent series may yield a convergent series: for instance, the addition of a divergent series with a series of its terms times ...

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field of non-zero order k is written as ⁡ =, a contraction of a tensor field of order k − 1. Specifically, the divergence of a vector is a scalar.

  7. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    An example of a conditionally convergent series is the alternating harmonic series. Many standard tests for divergence and convergence, most notably including the ratio test and the root test, demonstrate absolute convergence. This is because a power series is absolutely convergent on the interior of its disk of convergence. [a]

  8. Function series - Wikipedia

    en.wikipedia.org/wiki/Function_series

    There exist many types of convergence for a function series, such as uniform convergence, pointwise convergence, and convergence almost everywhere. Each type of convergence corresponds to a different metric for the space of functions that are added together in the series, and thus a different type of limit.

  9. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    If the domain of the functions is a topological space and the codomain is a uniform space, local uniform convergence (i.e. uniform convergence on a neighborhood of each point) and compact (uniform) convergence (i.e. uniform convergence on all compact subsets) may be defined. "Compact convergence" is always short for "compact uniform convergence ...