enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary-coded decimal - Wikipedia

    en.wikipedia.org/wiki/Binary-coded_decimal

    10001 is the binary, not decimal, representation of the desired result, but the most significant 1 (the "carry") cannot fit in a 4-bit binary number. In BCD as in decimal, there cannot exist a value greater than 9 (1001) per digit. To correct this, 6 (0110) is added to the total, and then the result is treated as two nibbles:

  3. Binary code - Wikipedia

    en.wikipedia.org/wiki/Binary_code

    Binary-coded decimal (BCD) is a binary encoded representation of integer values that uses a 4-bit nibble to encode decimal digits. Four binary bits can encode up to 16 distinct values; but, in BCD-encoded numbers, only ten values in each nibble are legal, and encode the decimal digits zero, through nine.

  4. Binary integer decimal - Wikipedia

    en.wikipedia.org/wiki/Binary_Integer_Decimal

    Both formats break a number down into a sign bit s, an exponent q (between q min and q max), and a p-digit significand c (between 0 and 10 p −1). The value encoded is (−1) s ×10 q × c . In both formats the range of possible values is identical, but they differ in how the significand c is represented.

  5. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    an 11-bit binary exponent, using "excess-1023" format. Excess-1023 means the exponent appears as an unsigned binary integer from 0 to 2047; subtracting 1023 gives the actual signed value; a 52-bit significand, also an unsigned binary number, defining a fractional value with a leading implied "1" a sign bit, giving the sign of the number.

  6. Double dabble - Wikipedia

    en.wikipedia.org/wiki/Double_dabble

    In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [1] [2] It is also known as the shift-and-add-3 algorithm, and can be implemented using a small number of gates in computer hardware, but at the expense of high latency. [3]

  7. BCD (character encoding) - Wikipedia

    en.wikipedia.org/wiki/BCD_(character_encoding)

    Technically, binary-coded decimal describes the encoding of decimal numbers where each decimal digit is represented by a fixed number of bits, usually four. With the introduction of the IBM card in 1928, IBM created a code [a] capable of representing alphanumeric information, [2] later adopted by other manufacturers.

  8. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    For example, to calculate the decimal number −6 in binary from the number 6: Step 1: +6 in decimal is 0110 in binary; the leftmost significant bit (the first 0) is the sign (just 110 in binary would be -2 in decimal). Step 2: flip all bits in 0110, giving 1001. Step 3: add the place value 1 to the flipped number 1001, giving 1010.

  9. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method for representing numbers that uses only two symbols for the natural numbers: typically "0" and "1" .