Search results
Results from the WOW.Com Content Network
A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models . While individual neurons are simple, many of them together in a network can perform complex tasks.
Today's deep neural networks are based on early work in statistics over 200 years ago. The simplest kind of feedforward neural network (FNN) is a linear network, which consists of a single layer of output nodes with linear activation functions; the inputs are fed directly to the outputs via a series of weights. The sum of the products of the ...
The formation of INNS soon led to the formation of the European Neural Network Society (ENNS) and the Japanese Neural Network Society (JNNS). Grossberg also founded the INNS official journal, [9] and was its Editor-in-Chief from 1987 to 2010. [10] Neural Networks is also the archival journal of ENNS and JNNS.
There was some conflict among artificial intelligence researchers as to what neural networks are useful for. Around late 1960s, there was a widespread lull in research and publications on neural networks, "the neural network winter", which lasted through the 1970s, during which the field of artificial intelligence turned towards symbolic methods.
Network neuroscience is an approach to understanding the structure and function of the human brain through an approach of network science, through the paradigm of graph theory. [1] A network is a connection of many brain regions that interact with each other to give rise to a particular function. [2]
Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]
Adaptive resonance theory (ART) is a theory developed by Stephen Grossberg and Gail Carpenter on aspects of how the brain processes information.It describes a number of artificial neural network models which use supervised and unsupervised learning methods, and address problems such as pattern recognition and prediction.
The language of thought theory allows the mind to process more complex representations with the help of semantics. Recent work has suggested that we make a distinction between the mind and cognition. Building from the tradition of McCulloch and Pitts, the computational theory of cognition (CTC) states that neural computations explain cognition. [2]