Search results
Results from the WOW.Com Content Network
Bacteria within the Deinococcota group may also exhibit Gram-positive staining but contain some cell wall structures typical of Gram-negative bacteria. The cell wall of some Gram-positive bacteria can be completely dissolved by lysozymes which attack the bonds between N-acetylmuramic acid and N-acetylglucosamine.
The bacterial cell wall differs from that of all other organisms by the presence of peptidoglycan (poly-N-acetylglucosamine and N-acetylmuramic acid), which is located immediately outside of the cytoplasmic membrane. Peptidoglycan is responsible for the rigidity of the bacterial cell wall and for the determination of cell shape. It is ...
An S-layer (surface layer) is a part of the cell envelope found in almost all archaea, as well as in many types of bacteria. [1] [2] The S-layers of both archaea and bacteria consists of a monomolecular layer composed of only one (or, in a few cases, two) identical proteins or glycoproteins. [3]
The peptidoglycan layer within the bacterial cell wall is a crystal lattice structure formed from linear chains of two alternating amino sugars, namely N-acetylglucosamine (GlcNAc or NAG) and N-acetylmuramic acid (MurNAc or NAM). The alternating sugars are connected by a β-(1,4)-glycosidic bond.
The composition of the outer membrane is distinct from that of the inner cytoplasmic cell membrane - among other things, the outer leaflet of the outer membrane of many gram-negative bacteria includes a complex lipopolysaccharide whose lipid portion acts as an endotoxin - and in some bacteria such as E. coli it is linked to the cell's ...
Other bacterial cell surface structures range from disorganised slime layers to highly structured capsules. These are made from secreted slimy or sticky polysaccharides or proteins that provide protection for the cells and are in direct contact with the environment. They have other functions, including attachment to solid surfaces.
Ultrastructure (or ultra-structure) is the architecture of cells and biomaterials that is visible at higher magnifications than found on a standard optical light microscope. This traditionally meant the resolution and magnification range of a conventional transmission electron microscope (TEM) when viewing biological specimens such as cells ...
[31] [32] [33] Bacteria may alter their shape by simpler transitions from rod to coccoid (and vice versa) as in Escherichia coli, [34] by more complex transitions while establishing multicellularity [31] or by the development of specialized cells, structures or appendages where the population presents a pleomorphic lifestyle. [35]