enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    To bisect an angle with straightedge and compass, one draws a circle whose center is the vertex. The circle meets the angle at two points: one on each leg. Using each of these points as a center, draw two circles of the same size. The intersection of the circles (two points) determines a line that is the angle bisector.

  3. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.

  4. Steiner–Lehmus theorem - Wikipedia

    en.wikipedia.org/wiki/Steiner–Lehmus_theorem

    The Steiner–Lehmus theorem, a theorem in elementary geometry, was formulated by C. L. Lehmus and subsequently proved by Jakob Steiner. It states: Every triangle with two angle bisectors of equal lengths is isosceles. The theorem was first mentioned in 1840 in a letter by C. L. Lehmus to C. Sturm, in which he asked for a purely geometric proof ...

  5. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    A convex quadrilateral is ex-tangential if and only if there are six concurrent angles bisectors: the internal angle bisectors at two opposite vertex angles, the external angle bisectors at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect.

  6. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    A green angle formed by two red rays on the Cartesian coordinate system. In Euclidean geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. [1] Angles formed by two rays are also known as plane angles as they lie in the plane that contains the rays

  7. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    PLL problems generally have 2 solutions. As shown above, if a circle is tangent to two given lines, its center must lie on one of the two lines that bisect the angle between the two given lines. By symmetry, if such a circle passes through a given point P, it must also pass through a point Q that is the "mirror image" of P about the angle bisector.

  8. Symmedian - Wikipedia

    en.wikipedia.org/wiki/Symmedian

    The angle formed by the symmedian and the angle bisector has the same measure as the angle between the median and the angle bisector, but it is on the other side of the angle bisector. The three symmedians meet at a triangle center called the Lemoine point. Ross Honsberger has called its existence "one of the crown jewels of modern geometry". [1]

  9. Trilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Trilinear_coordinates

    Intersection of the symmedians – the reflection of each median about the corresponding angle bisector Note that, in general, the incenter is not the same as the centroid ; the centroid has barycentric coordinates 1 : 1 : 1 (these being proportional to actual signed areas of the triangles BGC , CGA , AGB , where G = centroid.)