Search results
Results from the WOW.Com Content Network
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .
To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary digits: 3A 16 = 0011 1010 2 E7 16 = 1110 0111 2. To convert a binary number into its hexadecimal equivalent, divide it into groups of four bits. If the number of bits isn't a multiple of four, simply insert extra 0 bits at the left (called ...
Binary-coded decimal (BCD) is a binary encoded representation of integer values that uses a 4-bit nibble to encode decimal digits. Four binary bits can encode up to 16 distinct values; but, in BCD-encoded numbers, only ten values in each nibble are legal, and encode the decimal digits zero, through nine.
10001 is the binary, not decimal, representation of the desired result, but the most significant 1 (the "carry") cannot fit in a 4-bit binary number. In BCD as in decimal, there cannot exist a value greater than 9 (1001) per digit. To correct this, 6 (0110) is added to the total, and then the result is treated as two nibbles:
Both formats break a number down into a sign bit s, an exponent q (between q min and q max), and a p-digit significand c (between 0 and 10 p −1). The value encoded is (−1) s ×10 q × c . In both formats the range of possible values is identical, but they differ in how the significand c is represented.
Many modern CPUs provide limited support for decimal integers as an extended datatype, providing instructions for converting such values to and from binary values. Depending on the architecture, decimal integers may have fixed sizes (e.g., 7 decimal digits plus a sign fit into a 32-bit word), or may be variable-length (up to some maximum digit ...
Technically, binary-coded decimal describes the encoding of decimal numbers where each decimal digit is represented by a fixed number of bits, usually four. With the introduction of the IBM card in 1928, IBM created a code [a] capable of representing alphanumeric information, [2] later adopted by other manufacturers.
Similar binary floating-point formats can be defined for computers. There is a number of such schemes, the most popular has been defined by Institute of Electrical and Electronics Engineers (IEEE). The IEEE 754-2008 standard specification defines a 64 bit floating-point format with: an 11-bit binary exponent, using "excess-1023" format.