enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  3. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    Srinivasa Ramanujan mentioned the sums in a 1918 paper. [1] In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes. [2]

  4. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series. For a function f , the classical Ramanujan sum of the series ∑ k = 1 ∞ f ( k ) {\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)} is defined as

  5. Srinivasa Ramanujan - Wikipedia

    en.wikipedia.org/wiki/Srinivasa_Ramanujan

    Srinivasa Ramanujan Aiyangar [a] (22 December 1887 – 26 April 1920) was an Indian mathematician.Often regarded as one of the greatest mathematicians of all time, though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then ...

  6. Ramanujan's congruences - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_congruences

    In mathematics, Ramanujan's congruences are the congruences for the partition function p (n) discovered by Srinivasa Ramanujan: In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence. 4, 9, 14, 19, 24, 29, . . . then the number of its partitions is a multiple of 5.

  7. Ramanujan–Sato series - Wikipedia

    en.wikipedia.org/wiki/Ramanujan–Sato_series

    Ramanujan–Sato series. In mathematics, a Ramanujan–Sato series[1][2] generalizes Ramanujan ’s pi formulas such as, to the form. by using other well-defined sequences of integers obeying a certain recurrence relation, sequences which may be expressed in terms of binomial coefficients , and employing modular forms of higher levels.

  8. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The multiplicative inverse of its generating function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum of pentagonal number powers of its argument. Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences.

  9. Ramanujan tau function - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_tau_function

    Ramanujan tau function. Values of |τ (n) | for n < 16,000 with a logarithmic scale. The blue line picks only the values of n that are multiples of 121. The Ramanujan tau function, studied by Ramanujan (1916), is the function defined by the following identity: where q = exp (2πiz) with Im z > 0, is the Euler function, η is the Dedekind eta ...