enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.

  3. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer. [1][2] Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler ...

  4. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    For any integer n, n ≡ 1 (mod 2) if and only if 3n + 14 (mod 6). Equivalently, ⁠ n − 1 / 3 ⁠ ≡ 1 (mod 2) if and only if n ≡ 4 (mod 6). Conjecturally, this inverse relation forms a tree except for the 124 loop (the inverse of the 421 loop of the unaltered function f defined in the Statement of the problem section of ...

  5. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    Partial fraction decomposition. In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions ...

  6. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    Consider the integral. The standard approach to this integral is to use a half-angle formula to simplify the integrand. We can use Euler's identity instead: At this point, it would be possible to change back to real numbers using the formula e2ix + e−2ix = 2 cos 2x. Alternatively, we can integrate the complex exponentials and not change back ...

  7. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    The real part of the other side is a polynomial in cos x and sin x, in which all powers of sin x are even and thus replaceable through the identity cos 2 x + sin 2 x = 1. By the same reasoning, sin nx is the imaginary part of the polynomial, in which all powers of sin x are odd and thus, if one factor of sin x is factored out, the remaining ...

  8. Hermite polynomials - Wikipedia

    en.wikipedia.org/wiki/Hermite_polynomials

    Hermite polynomials were defined by Pierre-Simon Laplace in 1810, [1] [2] though in scarcely recognizable form, and studied in detail by Pafnuty Chebyshev in 1859. [3] Chebyshev's work was overlooked, and they were named later after Charles Hermite , who wrote on the polynomials in 1864, describing them as new. [ 4 ]

  9. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    The degree of the sum (or difference) of two polynomials is less than or equal to the greater of their degrees; that is, and . For example, the degree of is 2, and 2 ≤ max {3, 3}. The equality always holds when the degrees of the polynomials are different. For example, the degree of is 3, and 3 = max {3, 2}.