enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  3. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    For example, if n = 171 × p × q where p < q are very large primes, trial division will quickly produce the factors 3 and 19 but will take p divisions to find the next factor. As a contrasting example, if n is the product of the primes 13729, 1372933, and 18848997161, where 13729 × 1372933 = 18848997157, Fermat's factorization method will ...

  4. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    A simple example is the Fermat factorization method, which considers the sequence of numbers :=, for := ⌈ ⌉ +. If one of the x i {\displaystyle x_{i}} equals a perfect square b 2 {\displaystyle b^{2}} , then N = a i 2 − b 2 = ( a i + b ) ( a i − b ) {\displaystyle N=a_{i}^{2}-b^{2}=(a_{i}+b)(a_{i}-b)} is a (potentially non-trivial ...

  5. Quadratic sieve - Wikipedia

    en.wikipedia.org/wiki/Quadratic_sieve

    To factorize the integer n, Fermat's method entails a search for a single number a, n 1/2 < a < n−1, such that the remainder of a 2 divided by n is a square. But these a are hard to find. The quadratic sieve consists of computing the remainder of a 2 /n for several a, then finding a subset of these whose product is a square. This will yield a ...

  6. Congruence of squares - Wikipedia

    en.wikipedia.org/wiki/Congruence_of_squares

    Given a positive integer n, Fermat's factorization method relies on finding numbers x and y satisfying the equality = We can then factor n = x 2 − y 2 = (x + y)(x − y). This algorithm is slow in practice because we need to search many such numbers, and only a few satisfy the equation.

  7. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    This lack of unique factorization is a major difficulty for solving Diophantine equations. For example, many wrong proofs of Fermat's Last Theorem (probably including Fermat's "truly marvelous proof of this, which this margin is too narrow to contain") were based on the implicit supposition of unique factorization.

  8. Pierre de Fermat - Wikipedia

    en.wikipedia.org/wiki/Pierre_de_Fermat

    It was while researching perfect numbers that he discovered Fermat's little theorem. He invented a factorization methodFermat's factorization method—and popularized the proof by infinite descent, which he used to prove Fermat's right triangle theorem which includes as a corollary Fermat's Last Theorem for the case n = 4.

  9. Category:Integer factorization algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Integer...

    Dixon's factorization method; E. Euler's factorization method; F. Factor base; Fast Library for Number Theory; Fermat's factorization method; G. General number field ...