enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff's circuit laws - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_circuit_laws

    A matrix version of Kirchhoff's current law is the basis of most circuit simulation software, such as SPICE. The current law is used with Ohm's law to perform nodal analysis. The current law is applicable to any lumped network irrespective of the nature of the network; whether unilateral or bilateral, active or passive, linear or non-linear.

  3. Law of demand - Wikipedia

    en.wikipedia.org/wiki/Law_of_demand

    The law of demand applies to a variety of organisational and business situations. Price determination, government policy formation etc are examples. [6] Together with the law of supply, the law of demand provides to us the equilibrium price and quantity. Moreover, the law of demand and supply explains why goods are priced at the level that they ...

  4. Gustav Kirchhoff - Wikipedia

    en.wikipedia.org/wiki/Gustav_Kirchhoff

    Gustav Robert Kirchhoff (German: [ˈgʊs.taːf ˈkɪʁç.hɔf]; 12 March 1824 – 17 October 1887) was a German chemist, mathematican and physicist who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.

  5. Mesh analysis - Wikipedia

    en.wikipedia.org/wiki/Mesh_analysis

    Solving for mesh currents instead of directly applying Kirchhoff's current law and Kirchhoff's voltage law can greatly reduce the amount of calculation required. This is because there are fewer mesh currents than there are physical branch currents. In figure 2 for example, there are six branch currents but only three mesh currents.

  6. Lumped-element model - Wikipedia

    en.wikipedia.org/wiki/Lumped-element_model

    Representation of a lumped model consisting of a voltage source and a resistor. The lumped-element model (also called lumped-parameter model, or lumped-component model) is a simplified representation of a physical system or circuit that assumes all components are concentrated at a single point and their behavior can be described by idealized mathematical models.

  7. Kirchhoff's laws - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_laws

    Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph

  8. Nodal analysis - Wikipedia

    en.wikipedia.org/wiki/Nodal_analysis

    Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.

  9. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    At any junction, the total flow into a junction equals the total flow out of that junction (law of conservation of mass, or continuity law, or Kirchhoff's first law) Between any two junctions, the head loss is independent of the path taken (law of conservation of energy, or Kirchhoff's second law).