enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Genome-wide CRISPR-Cas9 knockout screens - Wikipedia

    en.wikipedia.org/wiki/Genome-wide_CRISPR-Cas9...

    To perform CRISPR knockouts on a genome-wide scale, collections of sgRNAs known as sgRNA libraries, or CRISPR knockout libraries, must be generated. The first step in creating a sgRNA library is to identify genomic regions of interest based on known sgRNA targeting rules. [31]

  3. Functional genomics - Wikipedia

    en.wikipedia.org/wiki/Functional_genomics

    Knock-outs have been produced for whole genomes, i.e. by deleting all genes in a genome. For essential genes , this is not possible, so other techniques are used, e.g. deleting a gene while expressing the gene from a plasmid , using an inducible promoter, so that the level of gene product can be changed at will (and thus a "functional" deletion ...

  4. Gene knockout - Wikipedia

    en.wikipedia.org/wiki/Gene_knockout

    Additionally, gene knockouts are not always a good model for human disease as the mouse genome is not identical to the human genome, and mouse physiology is different from human physiology. The KO technique is essentially the opposite of a gene knock-in. Knocking out two genes simultaneously in an organism is known as a double knockout (DKO).

  5. Genetic engineering techniques - Wikipedia

    en.wikipedia.org/wiki/Genetic_engineering_techniques

    Genome editing uses artificially engineered nucleases that create specific double-stranded breaks at desired locations in the genome. The breaks are subject to cellular DNA repair processes that can be exploited for targeted gene knock-out, correction or insertion at high frequencies.

  6. Yeast deletion project - Wikipedia

    en.wikipedia.org/wiki/Yeast_deletion_project

    The yeast deletion project, formally the Saccharomyces Genome Deletion Project, is a project to create data for a near-complete collection of gene-deletion mutants of the yeast Saccharomyces cerevisiae. Each strain carries a precise deletion of one of the genes in the genome. This allows researchers to determine what each gene does by comparing ...

  7. CRISPR gene editing - Wikipedia

    en.wikipedia.org/wiki/CRISPR_gene_editing

    CRISPR-Cas9 genome editing techniques have many potential applications. The use of the CRISPR-Cas9-gRNA complex for genome editing [10] was the AAAS's choice for Breakthrough of the Year in 2015. [11] Many bioethical concerns have been raised about the prospect of using CRISPR for germline editing, especially in human embryos. [12]

  8. FLP-FRT recombination - Wikipedia

    en.wikipedia.org/wiki/FLP-FRT_recombination

    In genetics, Flp-FRT recombination is a site-directed recombination technology, increasingly used to manipulate an organism's DNA under controlled conditions in vivo.It is analogous to Cre-lox recombination but involves the recombination of sequences between short flippase recognition target (FRT) sites by the recombinase flippase (Flp) derived from the 2 μ plasmid of baker's yeast ...

  9. Molecular cloning - Wikipedia

    en.wikipedia.org/wiki/Molecular_cloning

    Molecular cloning takes advantage of the fact that the chemical structure of DNA is fundamentally the same in all living organisms. Therefore, if any segment of DNA from any organism is inserted into a DNA segment containing the molecular sequences required for DNA replication, and the resulting recombinant DNA is introduced into the organism from which the replication sequences were obtained ...