enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Loop (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Loop_(graph_theory)

    In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same ...

  3. One-loop Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/One-loop_Feynman_diagram

    Diagrams with loops (in graph theory, these kinds of loops are called cycles, while the word loop is an edge connecting a vertex with itself) correspond to the quantum corrections to the classical field theory. Because one-loop diagrams only contain one cycle, they express the next-to-classical contributions called the semiclassical contributions.

  4. Reachability - Wikipedia

    en.wikipedia.org/wiki/Reachability

    In graph theory, reachability refers to the ability to get from one vertex to another within a graph. A vertex s {\displaystyle s} can reach a vertex t {\displaystyle t} (and t {\displaystyle t} is reachable from s {\displaystyle s} ) if there exists a sequence of adjacent vertices (i.e. a walk ) which starts with s {\displaystyle s} and ends ...

  5. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A loop is an edge that joins a vertex to itself. Graphs as defined in the two definitions above cannot have loops, because a loop joining a vertex to itself is the edge (for an undirected simple graph) or is incident on (for an undirected multigraph) {,} = {} which is not in {{,},}. To allow loops, the definitions must be expanded.

  6. Edge contraction - Wikipedia

    en.wikipedia.org/wiki/Edge_contraction

    Let = (,) be a graph (or directed graph) containing an edge = (,) with .Let be a function that maps every vertex in {,} to itself, and otherwise, maps it to a new vertex .The contraction of results in a new graph ′ = (′, ′), where ′ = ({,}) {}, ′ = {}, and for every , ′ = ′ is incident to an edge ′ ′ if and only if, the corresponding edge, is incident to in .

  7. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  8. Loop-erased random walk - Wikipedia

    en.wikipedia.org/wiki/Loop-erased_random_walk

    First, construct a single-vertex tree T by choosing (arbitrarily) one vertex. Then, while the tree T constructed so far does not yet include all of the vertices of the graph, let v be an arbitrary vertex that is not in T, perform a loop-erased random walk from v until reaching a vertex in T, and add the resulting path to T. Repeating this ...

  9. Pseudoforest - Wikipedia

    en.wikipedia.org/wiki/Pseudoforest

    A directed pseudoforest is a directed graph in which each vertex has at most one outgoing edge; that is, it has outdegree at most one. A directed 1-forest – most commonly called a functional graph (see below), sometimes maximal directed pseudoforest – is a directed graph in which each vertex has outdegree exactly one. [8]