Search results
Results from the WOW.Com Content Network
The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary between two fluid regions. [1] The pressure difference is caused by the surface tension of the interface between liquid and gas, or between two immiscible liquids. The Laplace pressure is determined from the Young ...
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
The Rayleigh–Plesset equation is often applied to the study of cavitation bubbles, shown here forming behind a propeller.. In fluid mechanics, the Rayleigh–Plesset equation or Besant–Rayleigh–Plesset equation is a nonlinear ordinary differential equation which governs the dynamics of a spherical bubble in an infinite body of incompressible fluid.
The change in vapor pressure can be attributed to changes in the Laplace pressure. When the Laplace pressure rises in a droplet, the droplet tends to evaporate more easily. When applying the Kelvin equation, two cases must be distinguished: A drop of liquid in its own vapor will result in a convex liquid surface, and a bubble of vapor in a ...
This measured pressure permits obtaining the pore diameter, which is calculated by using the Young-Laplace formula P= 4*γ*cos θ*/D in which D is the pore size diameter, P is the pressure measured, γ is the surface tension of the wetting liquid and θ is the contact angle of the wetting liquid with the sample. The surface tension γ is a ...
Figure 2: Change of pressure during bubble formation plotted as a function of added volume. Initially a bubble appears on the end of the capillary. As the size increases, the radius of curvature of the bubble decreases. At the point of the maximum bubble pressure, the bubble has a complete hemispherical shape whose radius is identical to the ...
This figure represents the evolution of the Rayleigh–Taylor instability from small wavelength perturbations at the interface (a) which grow into the ubiquitous mushroom shaped spikes (fluid structures of heavy into light fluid) and bubbles (fluid structures of light into heavy fluid) (b) and these fluid structures interact due to bubble merging and competition (c) eventually developing into ...
This basic stability requirement, and similar ones for other conjugate pairs of variables, is violated in analytic models of first order phase transitions. The most famous case is the van der Waals equation , [ 2 ] [ 3 ] p = R T / ( v − b ) − a / v 2 {\displaystyle p=RT/(v-b)-a/v^{2}} where a , b , R {\displaystyle a,b,R} are dimensional ...