Search results
Results from the WOW.Com Content Network
A frame is "the unit of transmission in a link layer protocol, and consists of a link layer header followed by a packet." [2] Each frame is separated from the next by an interframe gap. A frame is a series of bits generally composed of frame synchronization bits, the packet payload, and a frame check sequence.
Ethernet packet. The SFD (start frame delimiter) marks the end of the packet preamble. It is immediately followed by the Ethernet frame, which starts with the destination MAC address. [1] In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport
IP packets are composed of a header and payload. The header consists of fixed and optional fields. The payload appears immediately after the header. An IP packet has no trailer. However, an IP packet is often carried as the payload inside an Ethernet frame, which has its own header and trailer.
In this case the switch marks the frame for flooding and sends it to all forwarding ports within the respective VLAN. Forwarding this type of traffic can create unnecessary traffic that leads to poor network performance or even a complete loss of network service. [6] This flooding of packets is known as a unicast flooding. [7] [5]
Generic 802.11 Frame. The very first two octets transmitted by a station are the Frame Control. The first three subfields within the frame control and the last field are always present in all types of 802.11 frames. These three subfields consist of two bits Protocol Version subfield, two bits Type subfield, and four bits Subtype subfield.
Jumbo frames have payloads greater than 1500 bytes. In computer networking, jumbo frames are Ethernet frames with more than 1500 bytes of payload, the limit set by the IEEE 802.3 standard. [1] The payload limit for jumbo frames is variable: while 9000 bytes is the most commonly used limit, smaller and larger limits exist.
The Layer 3: network layer PDU is the packet. The Layer 2: data link layer PDU is the frame. The Layer 1: physical layer PDU is the bit or, more generally, symbol. Given a context pertaining to a specific OSI layer, PDU is sometimes used as a synonym for its representation at that layer.
The time is measured from the end of the frame check sequence of one frame to the start of the preamble for the next. [2]: 5 During data reception, some interpacket gaps may be smaller due to variable network delays, clock tolerances (all speeds), and the presence of repeaters (10 Mbit/s only).