enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cooperative binding - Wikipedia

    en.wikipedia.org/wiki/Cooperative_binding

    The first description of cooperative binding to a multi-site protein was developed by A.V. Hill. [4] Drawing on observations of oxygen binding to hemoglobin and the idea that cooperativity arose from the aggregation of hemoglobin molecules, each one binding one oxygen molecule, Hill suggested a phenomenological equation that has since been named after him:

  3. Cooperativity - Wikipedia

    en.wikipedia.org/wiki/Cooperativity

    Ligands can either have positive cooperativity, negative cooperativity, or non-cooperativity. The sigmoidal shape of hemoglobin's oxygen-dissociation curve results from cooperative binding of oxygen to hemoglobin. An example of positive cooperativity is the binding of oxygen to hemoglobin.

  4. Hill equation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Hill_equation_(biochemistry)

    For example, the Hill coefficient of oxygen binding to haemoglobin (an example of positive cooperativity) falls within the range of 1.7–3.2. [5] <. Negatively cooperative binding: Once one ligand molecule is bound to the enzyme, its affinity for other ligand molecules decreases. =.

  5. Sequential model - Wikipedia

    en.wikipedia.org/wiki/Sequential_model

    The sequential model (also known as the KNF model) is a theory that describes cooperativity of protein subunits. [1] It postulates that a protein's conformation changes with each binding of a ligand, thus sequentially changing its affinity for the ligand at neighboring binding sites.

  6. Binding site - Wikipedia

    en.wikipedia.org/wiki/Binding_site

    [4] [22] The binding of a ligand to an allosteric site of a multimeric enzyme often induces positive cooperativity, that is the binding of one substrate induces a favorable conformation change and increases the enzyme's likelihood to bind to a second substrate. [23]

  7. Monod–Wyman–Changeux model - Wikipedia

    en.wikipedia.org/wiki/Monod–Wyman–Changeux_model

    This model explains sigmoidal binding properties (i.e. positive cooperativity) as change in concentration of ligand over a small range will lead to a large increase in the proportion of molecules in the R state, and thus will lead to a high association of the ligand to the protein. It cannot explain negative cooperativity.

  8. Allosteric enzyme - Wikipedia

    en.wikipedia.org/wiki/Allosteric_enzyme

    This model is supported by positive cooperativity where binding of one ligand increases the ability of the enzyme to bind to more ligands. The model is not supported by negative cooperativity where losing one ligand makes it easier for the enzyme to lose more. In the sequential model there are many different global conformational/energy states ...

  9. Determination of equilibrium constants - Wikipedia

    en.wikipedia.org/wiki/Determination_of...

    In cooperativity, the initial ligand binding affects the host's affinity for subsequent ligands. In positive cooperativity, the first binding event enhances the affinity of the host for another ligand. Examples of positive and negative cooperativity are hemoglobin and aspartate receptor, respectively. [11] General Host–Guest Binding. (1.)