enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    With the Cartesian equation it is easier to check whether a point lies on the circle or not. With the parametric version it is easier to obtain points on a plot. In some contexts, parametric equations involving only rational functions (that is fractions of two polynomials) are preferred, if they exist.

  3. Parabolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Parabolic_coordinates

    The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.0, -1.732, 1.5). The two-dimensional parabolic coordinates form the basis for two sets of three-dimensional orthogonal coordinates. The parabolic cylindrical coordinates are produced by projecting in the -direction. Rotation about the ...

  4. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    The equation of a circle is (x − a) 2 + (y − b) 2 = r 2 where a and b are the coordinates of the center (a, b) and r is the radius. Cartesian coordinates are named for René Descartes, whose invention of them in the 17th century revolutionized mathematics by allowing the expression of problems of geometry in terms of algebra and calculus.

  5. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form.

  6. Fermat's spiral - Wikipedia

    en.wikipedia.org/wiki/Fermat's_spiral

    The Fermat spiral with polar equation = can be converted to the Cartesian coordinates (x, y) by using the standard conversion formulas x = r cos φ and y = r sin φ.Using the polar equation for the spiral to eliminate r from these conversions produces parametric equations for one branch of the curve:

  7. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...

  8. Archimedean spiral - Wikipedia

    en.wikipedia.org/wiki/Archimedean_spiral

    Equivalently, in polar coordinates (r, θ) it can be described by the equation = with real number b. Changing the parameter b controls the distance between loops. From the above equation, it can thus be stated: position of the particle from point of start is proportional to angle θ as time elapses.

  9. Parametrization (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parametrization_(geometry)

    In mathematics, and more specifically in geometry, parametrization (or parameterization; also parameterisation, parametrisation) is the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization. [1] "