Search results
Results from the WOW.Com Content Network
Instruction set extensions that have been added to the x86 instruction set in order to support hardware virtualization.These extensions provide instructions for entering and leaving a virtualized execution context and for loading virtual-machine control structures (VMCSs), which hold the state of the guest and host, along with fields which control processor behavior within the virtual machine.
x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU.. In the late 1990s x86 virtualization was achieved by complex software techniques, necessary to compensate for the processor's lack of hardware-assisted virtualization capabilities while attaining reasonable performance.
The vast majority of Intel server chips of the Xeon E3, Xeon E5, and Xeon E7 product lines support VT-d. The first—and least powerful—Xeon to support VT-d was the E5502 launched Q1'09 with two cores at 1.86 GHz on a 45 nm process. [2]
It was merged into the mainline Linux kernel in version 2.6.20, which was released on February 5, 2007. [1] KVM requires a processor with hardware virtualization extensions, such as Intel VT or AMD-V. [2] KVM has also been ported to other operating systems such as FreeBSD [3] and illumos [4] in the form of loadable kernel modules.
Mode Based Execution Control (MBEC) is an extension to x86 SLAT implementations first available in Intel Kaby Lake and AMD Zen+ CPUs (known on the latter as Guest Mode Execute Trap or GMET). [10] The extension extends the execute bit in the extended page table (guest page table) into 2 bits - one for user execute, and one for supervisor execute.
X86 virtualization#AMD virtualization (AMD-V) To a section : This is a redirect from a topic that does not have its own page to a section of a page on the subject. For redirects to embedded anchors on a page, use {{ R to anchor }} instead .
ASF provides the capability to start, end and abort transactional execution and to mark CPU cache lines for protected memory access in transactional code regions. It contains four new instructions—SPECULATE, COMMIT, ABORT and RELEASE—and turns the otherwise invalid LOCK-prefixed MOVx, PREFETCH and PREFETCHW instructions into valid ones inside transactional code regions.
AMD added a subset of SSE, 19 of them, called new MMX instructions, [3] and known as several variants and combinations of SSE and MMX, shortly after with the release of the original Athlon in August 1999, see 3DNow! extensions. AMD eventually added full support for SSE instructions, starting with its Athlon XP and Duron (Morgan core) processors.