Search results
Results from the WOW.Com Content Network
To highlight the fact that order and disorder are commonly understood to be measured in terms of entropy, below are current science encyclopedia and science dictionary definitions of entropy: A measure of the unavailability of a system's energy to do work; also a measure of disorder; the higher the entropy the greater the disorder. [4]
The more such states are available to the system with appreciable probability, the greater the entropy. In statistical mechanics, entropy is a measure of the number of ways a system can be arranged, often taken to be a measure of "disorder" (the higher the entropy, the higher the disorder).
Entropy (order and disorder) Extropy – a metaphorical term defining the extent of a living or organizational system's intelligence, functional order, vitality, energy, life, experience, and capacity and drive for improvement and growth; Negentropy – a shorthand colloquial phrase for negative entropy [63]
In physics, the terms order and disorder designate the presence or absence of some symmetry or correlation in a many-particle system. [ citation needed ] In condensed matter physics , systems typically are ordered at low temperatures ; upon heating, they undergo one or several phase transitions into less ordered states.
As a measure of disorder: Traditionally, 20th century textbooks have introduced entropy as order and disorder so that it provides "a measurement of the disorder or randomness of a system". It has been argued that ambiguities in, and arbitrary interpretations of, the terms used (such as "disorder" and "chaos") contribute to widespread confusion ...
Entropy may also be viewed as a physical measure concerning the microscopic details of the motion and configuration of a system, when only the macroscopic states are known. Such details are often referred to as disorder on a microscopic or molecular scale, and less often as dispersal of energy. For two given macroscopically specified states of ...
Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...
It is the configuration corresponding to the maximum of entropy at equilibrium. The randomness or disorder is maximal, and so is the lack of distinction (or information) of each microstate. Entropy is a thermodynamic property just like pressure, volume, or temperature. Therefore, it connects the microscopic and the macroscopic world view.